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Abstract—The propagation of a pressure shock has been studied by taking into account the effects of
radiative heat transfer. The velocity of propagation of the pressure shock has been determined and its
variation with the strength of the shock is computed. It is found that the velocity of propagation of the
pressure shock decreases continuously with the decrease of its strength during propagation till the
pressure discontinuity vanishes ultimately. The effects of radiative heat transfer will slow down the rate
of decrease of the velocity of propagation. A differential equation governing the variations of the strength
of the pressure shock during propagation has been determined and solved numerically. The numerical
results show that the strength of the pressure shock will continuously decrease till the pressure dis-
continuity vanishes ultimately. The radiative heat-transfer effects will siow down the rate of decrease in
the strength of the pressure shock. The results of Thomas are recovered as a particular case.

NOMENCLATURE
o density;
P, pressure;
T, absolute temperature;
U;,  velocity components;
k, coefficient of thermal conductivity;
Kenr, coeflicient of effective thermal conductivity;
Dr, Rosseland diffusion coefficient;
ar, Stefan-Boltzmann constant;

G, velocity of propagation of the pressure shock;
e, internal energy of the gas per unit mass;

Cp,  specific heat at constant pressure;

Ix coefficient of viscosity;

Pr,  Prandtl number;
Ry, radiative flux number;
R, gas constant;

A discontinuity in the velocity gradient;

¢, discontinuity in the pressure gradient;

L, discontinuity in the density gradient;

1, non-dimensional parameter of the strength
of the pressure shock ;

4, non-dimensional parameter of the velocity

of propagation of the pressure shock;
Vi, components of the unit normal vector;

I
M’ =4—'_;
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1. INTRODUCTION
SEVERAL authors [1-4] have made significant con-
tributions in the study of propagation of disturbances
in a variety of media. In our recent work [ 5, 6] we have
studied the propagation of sonic discontinuities in
radiating gases. The object of the present paper is to
study the propagation of a pressure shock by taking
into account the effects of viscosity and heat conduc-
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tivity in flows of radiating gases. In dealing with certain
problems like that of blast waves, the effects of pressure
and temperature are of primary concern. Since the gas
is viscous, we can assume discrete discontinuities in
pressure and temperature, while the velocity and den-
sity are continuous over the surface of discontinuity.
Such a discontinuity is defined as a pressure shock [3].
We shall study the propagation of a pressure shock in
a uniform flow of a radiating gas.

When the temperature of the gas is not too high and
the gas density is not too low, the radiation energy
density and radiation pressure can be neglected [7].
Pai [7] has shown that when the temperature T is
below 10° K, the radiation terms are negligibly small,
When the temperature is in the order of 10* K, the heat
flux of radiation is of the same order as that of heat
transfer by convection and conduction. Near T =
10°K, the radiation stresses and radiation energy
density are no longer negligible and the interaction
between the radiation field and the gas-dynamic field
are to be taken into account. In the present investi-
gation the temperature of the gas is assumed to be in
the order to 10*K and Rosseland approximation for
a thick gas medium has been used for the radiation
energy flux in local thermodynamic equilibrium. Under
this approximation the radiant energy flux in local
equilibrium is proportional to the temperature gradient
and hence the radiative transfer term is similar to heat-
conduction term. In this case, the coefficient of effective
thermal conductivity is given by [7]

Ker = K+4Dgap T3 .1
where K is the coefficient of thermal conductivity.
Dy is the Rosseland diffusion coefficient and ag is the
Stefan—Boltzmann constant.

The following boundary conditions, which are found
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appropriate to this problem, are assumed in this

discussion [3]

T, = 0: (1.2a)
dp

Lo, .
n ; (1.2b)
d7 =0 1.2
dr (1.2¢)

where U, are the velocity components, p is the pressure
and T is the temperature. The bar appearing in
relations (1.2) denotes evaluation at the rear or flow
side of the shock surface Y (t). The pressure condition
in (1.2) states that the normal directional derivative of
the pressure vanishes on the flow side of 3 .(z). The
temperature condition in (1.2) implies that the tem-
perature of a material particle has a stationary value
at the instant of its contact with the rear of the
surface (). In view of the fact that the velocity
vanishes on the surface > (z), this condition can also
be written as

or 0 13

o (13

2. BASIC EQUATIONS

The fundamental equations governing the system
are

op
— o UitpU; = 0, 2.1
dt
oU;
p??+pUjUi,j*Uij'j= 0, (22)

0 p il p ’
— “Ur |+ —{U L i
aT(;)e-#z >+ﬁx,({ K(pe+2U>}

ou; @ orT
—0ig 5;1( - 5;( <Kef[ 8xK> =0, (23)
p=pRT (2.4)
where
TR —P(Sij—%llUK,K O+ Uy j+Uj ). (2.5)

Ui, p, p and e stand for velocity components, pressure,
density and internal energy of the gas respectively. The
usual summation convention is employed and a comma
followed by an index i denotes differentiation with
respect to the coordinates x; of a rectangular system.

The geometrical and kinematical conditions of the
first order for a singular surface can be put in the
forms [8]:

(U] = U= 4vj, (2.6a)
ou;l _oU, | G 2.66)
a | T T T :
lo.]=p.=n, (2.7a)
opl Op

— |== =G, 2.7b
[ﬁt} ot $G (2.70)

where A; = [U;;]v; and { = [p ;]v; are functions de-
fined over the surface Y (¢). The bracket [Z] denotes
the jump in the quantity enclosed at contiguous points
of the singular surface >(t). The unit normal to the
surface 3 (t) with components v, is assumed directed

into the upstream region so that the normal velocity G
of the surface Y (t) will have a positive value.
The Rankine-Hugoniot shock relations are

p(U,—G) = p(U,~G), (2.8)
[o]v; = p(U,— G) U] (2.9)
[o4Udvi+[Kes T.]vi = p(U,— G)[E]. (2.10)

where
[E]=C[T]+3[U%].

When we combine (2.5) and (2.9) and make use of
the equation (2.6a), we obtain

[P]vi+3phxvivi = phi+ pix vevi. (2.11)

Let us now represent the surface 3 (¢} parametrically
by functions x{U", U 1) and let us denote by x;, the
derivatives of the space coordinates x; with respect to
the parametric coordinates U*(x = 1,2). We assume
that 3(¢) is regular in the sense that the functional
matrix || x;,]| has rank 2 at points of this surface. The
quantities x;, are the components of the projective
tensor of the surface 3 (t). In view of (2.11) we can write

(2.12)

A= Av;

where A is a scalar function on the surface Y (1).

It follows from (2.6a) and (2.12) that the vorticity of
the flow field is continuous across the wave surface
>°(¢). This shows that a pressure shock is an irrotational
wave. From equations (2.11) and (2.12) we get

[p] = 3ud.

The relation (2.13) provides us an equation for the
discontinuity in the pressure. Also taking jump of
relation (2.4) and making use of (2.13) we obtain a
corresponding equation for the discontinuity in the
temperature in the form

U
[1]=$-2
p1R

Making use of the equations (2.10), {2.13) and (2.14)
we obtain

[T:]vi=

(2.13)

A (2.14)

—pP1 ch MA
Kieg + AM3A3 + 3T, M2J2 4+ 3TEMAY
where M = $(u/p1 R), A = 4agDy and p; and T; are
the constant density and temperature of the gas in

front of the shock wave. If we make use of (2.6) and
(2.7) in (2.1), we get

(2.15)

{G=pA (2.16)

In consequence of the boundary conditions (1.2b)
and (1.2¢) it is now readily seen that the compatibility
conditions of the first order for the pressure and tem-
perature can be put in the following forms [8]:

[p.]=3ug™1 . xy (2.17a)

p| . G4
o |7

[T]=Ti=Tvv+3—t gl x, (218a)
p1R

3}

(2.17b)

°LT]

2.18b
5 (2.18b)

=G[T v
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where ¢g* are the contravarient components of the

fundamental metric tensor of the surface Y (t). The 4 ,
are the surface derivatives and 81/t is the d-time
derivative of the scalar function A.
Using (2.14) and (2.15) in (2.18b), we obtain
3[T] —p1G*C,MA
ot K+ AM3A+3T, M222 +3T2MA)
Differentiating (2.4) with respect to x;, we are led to
the relations
[p.i]=p:R[TJ+R[p,T],
[piT]=[p.d[T]+Ti[p.]
Multiplying (2.20) by v; and making use of (2.17a),
(2.21), and (2.16) we get

(2.19)

(2.20)
221

-

T 4Prp K
X {K e + AMPA*+3T, M2A2 4+ 3TEMA)}, (2.22)

where Pr = Cpu/K is the Prandtl number. The second

term of the first paranthetical expression in (2.22) is

equal to the discontinuity [p] in pressure and the

second paranthetical expression in (2.22) is equal to the

jump in the radiative transfer term. For a non-radiating
gas the relation (2.22) assumes the form

" 4Prp,

2

(p1+3u4)

2

(py +3ud), (2.23)
which is the expression for velocity of propagation of
the moving surface '(¢) derived by Thomas [3]. For
weak shocks, ie. for sufficiently small values of the
discontinuity [p], the velocity of the weak shock can
be deduced from (2.22) in the form

Gt — 3yp,

= 1+R
4Prp1( +Ry),

(2.24)

where R, is the radiation flux number defined as
_ 4DpapT{
PSR
Rewriting the equation (2.22) in the non-dimensional
form, we have

6% = (n+ D{(1+Rp)+ Ry’ +3n* 4+ 3n)}, (2.25)

where

G
S = a\/@Pr) and # = %

Here § is the non-dimensional parameter of the velocity
of propagation of the pressure shock and # is the non-
dimensional parameter of the strength of the pressure
shock. The variations of & vs 5 are shown in Fig. 1.
The value of § corresponding to n = 0 gives the velocity
of propagation of a weak shock. It is interesting to
note that the velocity of propagation of the pressure
shock decreases continuously with the decrease of its
strength during propagation till the pressure discon-
tinuity vanishes ultimately. The effects of radiative heat
transfer will slow down the rate of decrease of the
velocity of propagation.
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FiG. 1. Variation of the velocity of propagation with
respect to the strength of the pressure shock.

3. VARIATION OF THE STRENGTH OF A PRESSURE
SHOCK DURING PROPAGATION

Taking the J-time derivative of (2.14), we have

3[T] A
—= =M. 31
ot ot (4)
Using (2.19) and (3.1), it follows that
ol -pG*C,A
Y 3,3 22 2 - (32
ot Kieg +AM A" +3T, M?22+ 3T MA)
Substituting for G2 from (2.22) in (3.2), we have
o4 3yC, s
—= - A)A
(St 4PrK(p1+’5ﬂ ) ]
which can be put in the form
o —3p
= 1). 3.
5t 4 n(+1) (33)

Let Y (¢o) represent the position of the wave surface
at time t = t, and let ¢ denote the distance measured
from Y (to) along the normal trajectories to the family
of surfaces Y (¢) in the direction of propagation. The
discontinuity » can be regarded as a function of the
distance o along the normal trajectory and hence
we have

on _ dn
—=G—. 3.
ot © do (33)
Making use of (3.5) and (2.22) in (3.3) we get
—n(l+m*
dn n(1+7n) (36)

dr ~ (1+ R+ R, +3n* + 3}’

where

D1 3
— . Pr
I o aJ(3Pr)
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F1G. 2. Variation of the strength of the pressure shock
during propagation.

When the radiative transfer term is neglected, equa-
tion (3.6) takes the form

dn _ + 1) (3.7
ar - 7y . .
Solving (3.7), we get the solution for # in the form
1+ Be‘r
F+1P = 38
n+1p = I~ Be- (3.8)

where B is the constant of integration. If we suppose
that the initial pressure discontinuity #o =1 at I' = 0,

the solution {3.8) can be put in the form

4

n=-: e

(3.9)
(3+2 2)e 03 2 J2e

which shows that y — 0 as I' — >. This is in full agree-

ment with the conclusion of Thomas [3].

The variations of the strength of the pressure shock
during propagation are exhibited in Fig. 2. The
strength of the pressure shock decreases continuously
till the discontinuity vanishes ultimately. The effects of
radiative heat transfer will slow down the rate of
decrease of the strength of the pressure shock during
propagation.

REFERENCES

I. H. Schmitt, Entsteheung von VerdichtungsstoBen in
Strahlenden Gasen. Z. Angew. Math. Mech. 52, 529-534
(1972).

2. E. Becker, Die Entstehung von VerdichtungsstoBen in
Kompressiblen Medien, Ing.-Arch. 39, 302-315 (1970).

3. T. Y. Thomas and C. R. Edstrom, Pressure shocks in
viscous heat-conducting gases, Engng 47, 319-325 (1961).

4. T.Y. Thomas, Velocity of dislocation in crystals, J. Math.
Mech. 18(6). 571--584 (1968).

. S. Srinivasan and R. Ram, Propagation of sonic waves
in radiating gases, Z. Angew. Math. Mech. To be
published.

6. S.Srinivasan and R. Ram, The growth and decay of sonic
waves in radiating gas at high temperature, Z. Angew.
Math. Phys. To be published.

7. S. 1. Pai, Thermal Radiation Effects on Hypersonic Flow
Fields. Non-Linear Problems of Engineering. Academic
Press, New York (1964).

8. T. Y. Thomas, Extended compatibility conditions for the
study of surfaces of discontinuity in continuum mech-
anics, J. Math. Mech. 6, 311--322 (1957).

wn

EFFET DU TRANSFERT PAR RAYONNEMENT SUR LA PROPAGATION
DES ONDES DE CHOC

Resumeé—La propagation d'un choc de pression a été étudiée en tenant compte des effets du transfert
par rayonnement. La vitesse de propagation a été déterminée et sa variation avec I'intensité du choc
ont étécalculées. On a trouvé que la vitesse de propagation décroit continiment avec son intensité pendant
la propagation jusqu’a la disparition finale de la discontinuité de pression. L'effet du transfert de chaleur
par rayonnement ralentit la décroissance de la vitesse de propagation. Une équation différentielle qui
gouverne les variations de P'intensité du choc de pression pendant sa propagation a été déterminée et
résolue numériquement. Les résultats numériques montrent que I'intensité du saut de pression décroit
continfiment jusqu’a la disparition finale de la discontinuité de pression. L'effet du transfert de chaleur
par rayonnement diminue le taux de décroissance de l'intensité du saut de pression. Les résultats de
Thomas sont restrouvés comme un cas particulier.

EINFLUSS DES STRAHLUNGS-WARMEUBERGANGS AUF DIE
FORTPFLANZUNG VON VERDICHTUNGSSTOSSEN

Zusammenfassung—Die Fortpflanzung cines Verdichtungsstosses wurde untersucht unter Berlick-
sichtigung der Einfliisse des Strahlungs-Wirmeiiberganges. Die Fortpflanzungsgeschwindigkeit wurde
bestimmt und ihre Anderung mit der Stdrke des Stosses berechnet. Es zeigte sich, dass die
Fortpflanzungsgeschwindigkeit kontinuierlich abnimmt, mit abnehmender Druckstérke, bis schliesslich
der Drucksprung verschwindet. Der Einfluss des Strahlungswérmeliberganges verringert diese Abnahme
der Fortpflanzungsgeschwindigkeit. Fine Differentialgleichung, die die Anderung der Stdrke des
Verdichtungsstosses wihrend seiner Fortpflanzung charakterisiert wurde aufgestellt und numerisch
geldst. Die numerischen Ergebnisse zeigen, dass die Stdrke des Verdichtungsstosses kontinuierlich
abnimmt, bis der Drucksprung schliesslich verschwindet. Die Ergebnisse von Thomas werden als ein
spezieller Fall erhalten.
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BJAUSAHUE JIYYUCTOTO ITEPEHOCA HA PACITPOCTPAHEHUE CKAYKOB
VIIIOTHEHUA

Awnorauun — M3yyancs npouece pacpocTPaHeHASA CKayka yIUIOTHEHHA C YIETOM BAHAHNS NYYRCTOrO
nepeHoca. Onpeaeianack CKOPOCTE PACIPOCTPAHEHHS yAAPHON BOJIHEI, H YUHTHIBANOCH €€ H3IMEHEHHE
¢ U3MEHEHWEM HHTCHCHBHOCTH yAapHod BosHel. HaltieHo, 4TO NpPH PacnpoCTpaHEHUH YHapHOH
BOJIHBI CKOPOCTD €€ pacnpoOCTPAHEHNUs TOCTOSTHHO YMEHBIIAETCS A0 TeX NOp, NOKa CKa4YOK AaBJICHHSA
OKOHYATENBHO HE WCHME3HeT. JIyuMHCTBI TepeHoC Terla CHHXAeT TEMIT YMEHBIICHHS CKOPOCTH
PACTIPOCTPAHEHHS YOAPHOM BOJIHBI, BbiBEIEHO M YHMCIEHHO PelueHO nubdepeHUnaNTbHOEe YPaABHEHHE,
onpenesolee H3MeHEHHe HHTEHCHBHOCTH y1apHO BOJTHBI BO BPEMH €€ pacnpocTpaHeHns. HucieH-
Hble PE3yJIbTAThi MOKA3LIBAYOT, YTO MHTEHCHBHOCTL YAAPHOH BOJIHBI NOCTOSAHHO YMEHBIUAECTCH HO
HMCYE3HOBEHHS ckadka nasgeHdd. JIyYyucThiit nepeHoc Tenna 3aMeniseT TeMN CHI)KEHHSI HHTEHCHB-
HOCTH yaapHoit sonHel, Kak vacTHbIN cnyyall npMBOAATCA pe3ynbTaThi ToMaca.
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