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Ah&r&et-The propagation of a pressure shock has been studied by taking into account the effects of 
radiative heat transfer. The velocity of propagation of the pressure shock has been determined and its 
variation with the strength of the shock is computed. It is found that the velocity of propagation of the 
pressure shock decreases continuously with the decrease of its strength during propagation till the 
pressure discontinuity vanishes ultimately. The effects of radiative heat transfer will slow down the rate 
of decrease of the velocity of propagation. A differential equation governing the variations of the strength 
of the pressure shock during propagation has been determined and solved numerically. The numerical 
results show that the strength of the pressure shock will continuously decrease till the pressure dis- 
continuity vanishes ultimately. The radiative heat-transfer effects will slow down the rate of decrease in 

the strength of the pressure shock. The results of Thomas are recovered as a particular case. 

NOMENCLATURE 

density; 
pressure; 
absolute temperature; 
velocity components; 
coefficient of thermal conductivity; 
coefficient of effective thermal conductivity; 
Rosseland diffusion coefficient ; 
Stefan-Boltzmann constant; 
velocity of propagation of the pressure shock; 
internal energy of the gas per unit mass; 
specific heat at constant pressure; 
coefficient of viscosity; 
Prandtl number; 
radiative flux number; 
gas constant; 
discontinuity in the velocity gradient; 
discontin~ty in the pressure gradient; 
discontinuity in the density gradient; 
non-dimensional parameter of the strength 
of the pressure shock; 
non-dimensional parameter of the velocity 
of propagation of the pressure shock; 
components of the unit normal vector; 

4 p =x-.-; 
PlR 

= 44nDn. 

1. INTRODUC~ON 

SEVERAL authors [l-4] have made significant con- 
tributions in the study of propagation of disturbances 
in a variety of media. In our recent work [S, 61 we have 
studied the propagation of sonic discontinuities in 
radiating gases. The object of the present paper is to 
study the propagation of a pressure shock by taking 
into account the effects of viscosity and heat conduc- 

tivity in flows of radiating gases. In dealing with certain 
problems like that of blast waves, the effects of pressure 
and temperature are of primary concern. Since the gas 
is viscous, we can assume discrete discontinuities in 
pressure and temperature, while the velocity and den- 
sity are continuous over the surface of discontinuity. 
Such a discontinuity is defined as a pressure shock [3]. 
We shall study the propagation of a pressure shock in 
a uniform flow of a radiating gas. 

When the temperature of the gas is not too high and 
the gas density is not too low, the radiation energy 
density and radiation pressure can be neglected [7]. 
Pai [7] has shown that when the temperature T is 
below lo3 K, the radiation terms are negligibly small, 
When the temperature is in the order of lo4 K, the heat 
flux of radiation is of the same order as that of heat 
transfer by convection and conduction. Near T = 
10sK, the radiation stresses and radiation energy 
density are no longer negligible and the interaction 
between the radiation field and the gas-dynamic field 
are to be taken into account. In the present investi- 
gation the temperature of the gas is assumed to be in 
the order to 104K and Rosseland approximation for 
a thick gas medium has been used for the radiation 
energy flux in local thermodynamic equilibrium. Under 
this approximation the radiant energy Rux in local 
equilibrium is proportional to the temperature gradient 
and hence the radiative transfer term is similar to heat- 
conduction term. In this case, the coefficient of effective 
thermal conductivity is given by 171 

KeR = K + 4DRaR T3 (1.1) 

where K is the coefficient of thermal conductivity. 
DR is the Rosseland diffusion coefficient and aR is the 
Stefan-Boltzmann constant. 

The following boundary conditions, which are found 
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into the upstream region so that the normal velocity G 
of the surface C(t) will have a positive value. 

The Rankine-Hugoniot shock relations are 

[oij]Vj = p(L'n-G)[Ui]. (2.91 

[bijUj]vi+[K,tf Ti]ri = p(U,-G)[E]. (2.10) 

where 
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appropriate to this problem, are assumed in this 
discussion [3] 

ui=O; (1.2a) 

6 
dn=o; (1.2b) 

dT 
-_=O 
dt 

(1.2c) 

where Ui are the velocity components, p is the pressure 
and T is the temperature. The bar appearing in 
relations (1.2) denotes evaluation at the rear or flow 

side of the shock surface x(t). The pressure condition 

in (1.2) states that the normal directional derivative of 
the pressure vanishes on the flow side of C(t). The 
temperature condition in (1.2) implies that the tem- 
perature of a material particle has a stationary value 
at the instant of its contact with the rear of the 

surface C(t). In view of the fact that the velocity 
vanishes on the surface x(t), this condition can also 
be written as 

rlT 
- = 0. 
?t 

[E] = C,[T] +$[U’]. 

When we combine (2.5) and (2.9) and make use of 
the equation (2.6a). we obtain 

Let us now represent the surface C(t) parametrically 
by functions xi(U’, U2, t) and let us denote by xi2 the 
derivatives of the space coordinates .~i with respect to 
the parametric coordinates U’(a = 1,2). We assume 
that C(t) is regular in the sense that the functional 

matrix //xizll has rank 2 at points of this surface. The 
quantities xii are the components of the projective 
tensor of the surface C(t). In view of (2.11) we can write 

2. BASIC EQUATIONS 

The fundamental equations governing the system 

are 
3P 
Y&+P,i”i+Pui,i = O, (2.1) 

l3Ui 
(2.4 

where 

p=pRT (2.4) 

Ujj = -p6ij_s~U,,,6ij+~(Ui,j+ r/,,i). (2.5) 

Ui, p, p and e stand for velocity components, pressure, 
density and internal energy of the gas respectively. The 
usual summation convention is employed and a comma 
followed by an index i denotes differentiation with 

respect to the coordinates xi of a rectangular system. 
The geometrical and kinematical conditions of the 

first order for a singular surface can be put in the 

forms [ 81: 

[Ui,j] = 9,j = i;Vj, (2.6a) 

i3Ui 1 I ais, - 
iit =dr= -AiG, (2.6b) 

[P,t] = P.i = ivi3 (2.7a) 

-CC. (2.7b) 

where li = [.!Ji,j]vj and < = [P,~]v~ are functions de- 
fined over the surface C(t). The bracket [Z] denotes 
the jump in the quantity enclosed at contiguous points 
of the singular surface z(t). The unit normal to the 
surface z(t) with components vi is assumed directed 

p(U,-G) = fi(un-G), (2.X) 

ii = iVi (2.12) 

where 1 is a scalar function on the surface x(t). 
It follows from (2.6a) and (2.12) that the vorticity of 

the flow field is continuous across the wave surface 

C(t). This shows that a pressure shock is an irrotational 
wave. From equations (2.11) and (2.12) we get 

[PI = 44. (2.13) 

The relation (2.13) provides us an equation for the 
discontinuity in the pressure. Also taking jump of 
relation (2.4) and making use of (2.13) we obtain a 
corresponding equation for the discontinuity in the 
temperature in the form 

[T] = ‘bi. (2.14) 

Making use of the equations (2.10), (2.13) and (2.14) 
we obtain 

[Tilvi= 
-p, GC,MI 

KleB + A(M313 + 3Ti M2A2 + 3T:ML)’ 
(2.15) 

where M = $(p/pl R), A = 4aR DR and pi and T, are 
the constant density and temperature of the gas in 
front of the shock wave. If we make use of (2.6) and 
(2.7) in (2.1) we get 

[G = p, 1. (2.16) 

In consequence of the boundary conditions (I .2b) 
and (1.2~) it is now readily seen that the compatibility 
conditions of the first order for the pressure and tem- 
perature can be put in the following forms [8]: 

[P,i] = 4PS”“~,2xi~l (2.17a) 

(2.17b) 

[TV] = !Ti = ~jvjvi+$~gzfil,,xi,j (2.18a) 

WI __ = G[‘7’i]Vi hr (2.18b) 
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where g”” are the contravarient components of the 
fundamental metric tensor of the surface C(t). The A,, 
are the surface derivatives and &I/& is the &time 
derivative of the scalar function 1. 

Using (2.14) and (2.15) in (2.18b), we obtain 

WI -p,G2C,M1 

6t KI,~~+A(M~~~+~T~ M2A2+37’:MA) 
(2.19) 

Differentiating (2.4) with respect to xi, we are led to 
the relations 

[P,iI = PIR[T,] +R[p,iT], (2.20) 

CP.iTI = [P,iI[TI + T[P,i]. (2.21) 

Multiplying (2.20) by Vi and making use of (2.17a), 
(2.21), and (2.16) we get 

31 
G2 = ~ 4Prp, K (P1+4!d 

x {K,efi+A(M3;.3+3Tl M212+3T:MI)}, (2.22) 

where Pr = C,p/K is the Prandtl number. The second 

term of the first paranthetical expression in (2.22) is 
equal to the discontinuity [p] in pressure and the 
second paranthetical expression in (2.22) is equal to the 
jump in the radiative transfer term. For a non-radiating 
gas the relation (2.22) assumes the form 

G2 = &cp,+:A (2.23) 

which is the expression for velocity of propagation of 
the moving surface x(t) derived by Thomas [3]. For 
weak shocks, i.e. for sufficiently small values of the 
discontinuity [p], the velocity of the weak shock can 
be deduced from (2.22) in the form 

G2 = *(l+RI), 
4PrP 1 

(2.24) 

where R, is the radiation flux number defined as 

R,= 
4DR aR T: 

K 

Rewriting the equation (2.22) in the non-dimensional 
form, we have 

a2 = (~+l){(l+Rs)+RJ(~3+3;r12+3~)}, (2.25) 

where 

G [IPI 
“=c J@Pr) and q=-. 

1 Pl 

Here 6 is the non-dimensional parameter of the velocity 
of propagation of the pressure shock and 9 is the non- 
dimensional parameter of the strength of the pressure 
shock. The variations of 6 vs 1 are shown in Fig. 1. 

The value of 6 corresponding to q = 0 gives the velocity 
of propagation of a weak shock. It is interesting to 
note that the velocity of propagation of the pressure 
shock decreases continuously with the decrease of its 
strength during propagation till the pressure discon- 
tinuity vanishes ultimately. The effects of radiative heat 
transfer will slow down the rate of decrease of the 
velocity of propagation. 
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FIG. 1. Variation of the velocity of propagation with 
respect to the strength of the pressure shock. 

3. VARIATION OF THE STRENGTH OF A PRESSURE 
SHOCK DURING PROPAGATION 

Taking the &time derivative of (2.14), we have 

(3.1) 

Using (2.19) and (3.1), it follows that 

61 -pG’C,I 

St = Klefi+ A(M313+3Tl M212+3TfMA)’ 
(3.2) 

Substituting for G2 from (2.22) in (3.2), we have 

which can be put in the form 

61 -3P, _=_ 
6t 4/l 

ah+ 1). (3.3) 

Let x(to) represent the position of the wave surface 
at time t = to and let o denote the distance measured 
from C(to) along the normal trajectories to the family 
of surfaces C(t) in the direction of propagation. The 
discontinuity q can be regarded as a function of the 
distance u along the normal trajectory and hence 
we have 

?!!= G?!!!, 
6t da 

(3.5) 

Making use of (3.5) and (2.22) in (3.3) we get 

drl -r(l+4P -= 
dr {1+Rf+R,(q3+3q2+3q)}*’ 

(3.6) 

where 

I- = E- a J($Pr) 
Cl }’ 



FIG. 2. Variation of the strength of the pressure shock 
during propagation. 

When the radiative transfer term is 
tion (3.6) takes the form 

neglected. equa- 

(3.7) 

Solving (3.7), we get the solution for q in the form 

(,I+ 1): = !.+Be~’ 
I-Be ‘. 

where B is the constant of integration. If we suppose 
that the initial pressure discontinuity ?I,, = 1 at r = 0, 

the solution (3.X) can be put in the form 

4 

‘I =13+2,.,2)e’ +(3-2J2)em’-2’ 
(3.9) 

which shows that q + 0 as r + JI. This is in full agree- 
ment with the conclusion of Thomas [3]. 

The variations of the strength of the pressure shock 
during propagation are exhibited in Fig. 2. The 

strength of the pressure shock decreases continuously 

till the discontinuity vanishes ultimately. The effects of 

radiative heat transfer will slow down the rate of 
decrease of the strength of the pressure shock during 

propagation. 
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EFFET DU TRANSFERT PAR RAYONNEMENT SUR LA PROPAGATION 
DES ONDES DE CHOC 

R&sum&La propagation d’un choc de pression a t7ti ttudite en tenant compte des effets du transfert 
par rayonnement. La vitesse de propagation a &t& dkterminte et sa variation avec I’intensitk du choc 
ont &tt calcult?es. On a trouvk que la vitesse de propagation d&roil continfiment avec son inten.sitC pendant 
la propagation jusqu’h la disparition finale de la discontinuit? de pression. L’effet du transfert de chaleur 
par rayonnement ralentit la d&.zroissance de la vitesse de propagation. Une tquation diffkrentielle qui 
gouverne les variations de I’intensitt du choc de pression pendant sa propagation a &ti d&ermin&e et 
rbolue numkriquement. Les rbultats numttriques montrent que I’intensite du saut de pression dtcroit 
contintiment jusqu’8 la disparition finale de la discontinuitk de pression. L’effet du transfert de chaleur 
par rayonnement diminue le taux de dCcroissance de I’intensitk du saut de pression. Les rCsultats de 

Thomas sont restrouvCs comme un cas particulier. 

EINFLUSS DES STRAHLUNGS-WARMEUBERGANGS AUF DIE 
FORTPFLANZUNG VON VERDICHTUNGSSTOSSEN 

Zusammenfassung-~Die Fortpflanzung eines Verdichtungsstosses wurde untersucht unter Beriick- 
sichtigung der Einfliisse des Strahlungs-Wlrmeiiberganges. Die Fortpflanzungsgeschwindigkeit wurde 
bestimmt und ihre ;inderung mit der Stgrke des Stosses berechnet. Es zeigte sich, dass die 
Fortpflanzungsgeschwindigkeit kontinuierlich abnimmt, mit abnehmender DruckstCrke, bis schliesslich 
der Drucksprung verschwindet. Der Einfluss des StrahlungswCrmedberganges verringert diese Abnahme 
der Fortpflanzungsgeschwindigkeit. Eine Differentialgleichung, die die ;inderung der StLrke des 
Verdichtungsstosses wlhrend seiner Fortpflanzung charakterisiert wurde aufgestellt und numerisch 
gel&t. Die numerischen Ergebnisse zeigen, dass die Sttirke des Verdichtungsstosses kontinuierlich 
abnimmt. bis der Drucksprung schliesslich verschwindet. Die Ergebnisse von Thomas werden als ein 

spezieller Fall erhalten. 
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BJ’GWHHE JIYYMCTOrO TIEPEHOCA HA PA~~PO~FAHEH~E CKAYKOB 
Y~~OTHEH~~ 

~0Ta~~~ - Wsyqanca npouecf pa~~pocTpaHeHn~ mawa ynnome~~x c yYeToM B~~~H~~ nywcroro 
nepeHoca. Onpenemnacb cKopocTb pac~poc~paHeH~~ yaapwoR BombI, u ymTbmanocb ei: R3MeHeHNe 
C H3MeHeHUeM HHTeHCABHOCTH yAapHOi BOIIHbI. Haiineiio, \1TO IfpH pZiCUpOCTpaHeHUH yAapHO%i 

BO~HblCKO~OCTb~&~~C~~OCT~~HeH~~UOCTORHHOyMeHb~~~TCIIAOT~X UOp,IIOKaCKaYOKAaBJIeHHfl 

OKOH4aTeJlbHO He MCW3HeT. nyYACTblk UepeHOC TeIIJIa CHEKBeT TeMll yMeHbUIeHWi CKOPOCTH 

PaCnpOCTpaHeHWnyAapHOR BOJlHbl.BblBeAeHO I( YHCJWHHO PWJeHO Al4~~epeHUHZiJIbHOeypaBHeHH~, 

OU~eAe~~~~eeM3MeH~H~~IIHTeHCABHOCTI1yA~~HO~BO~HbIBOB~~MRei:~~C~~OCT~~HeH~~.~~CA~~- 

Hble pe3yJlbTaTbl tlOKa3blBaMT, YTO HHTeHCABHOCTb yAapHOii BOJIHbI IIOCTOflHHO yMeHbIUaeTCR II0 

ACYe3HOBeHHR CKaYKa JIaWIeHllff. nyYHCTbIir UepeHOC TeIlJla 3aMeAJlReT TeMII CHHXEHHR EiHTeHCAB- 

HOCTH yAapHOkr BOAHbl. KaK 'EiCTHblfi CnyYaii IIpliBOnJlTCfi pe3yJlbTZiTbi ToMaca. 


